Code: 20EE3401

II B.Tech - II Semester – Regular / Supplementary Examinations MAY - 2023

MEASUREMENTS AND INSTRUMENTATION (ELECTRICAL & ELECTRONICS ENGINEERING)

Duration: 3 hours Max. Marks: 70

Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.

2. All parts of Question must be answered in one place.

			BL	СО	Max.			
					Marks			
	UNIT-I							
1	a)	Deduce the expressions for ratio error and	L4	CO4	7 M			
		phase angle error of current Transformer.						
	b)	Deduce the expression for torque equation	L4	CO4	7 M			
		of a PMMC(Permanent Magnet Moving						
		Coil) instrument.						
	OR							
2	Exp	plain construction and working principle of	L2	CO2	14 M			
	Pot	ential Transformer with neat sketch.						
UNIT-II								
3	a)	Explain about creeping and its	L2	CO3	7 M			
		compensation in single phase induction type						
		energy meter.						
	b)	Explain constructional details of 1-φ	L3	CO2	7 M			
		electrodynamometer type wattmeter with a						
		neat sketch.						

		\mathbf{OR}			
4	a)	Derive torque expression for single phase	L4	CO1	7 M
		induction type energy meter.			
	b)	Illustrate with neat sketch working principle	L3	CO4	7 M
		of moving iron power factor meter.			
5	<u>a)</u>	UNIT-III Evalain with next sketch how Hav's bridge	1.2	CO2	7 M
5	a)	Explain with neat sketch how Hay's bridge	L2	CO2	7 M
	L)	is used for measurement of inductance.	1.2	CO6	7 1/1
	b)	Explain the megger method for the	L2	CO6	7 M
		measurement of resistance. OR			
6	<u>a)</u>	_	1.2	CO4	7 M
6	a)		L2	CO4	7 M
	b)	Anderson bridge with suitable diagrams.	L4	CO4	7 M
	b)	A Maxwell bridge is used to measure inductive impedance. The bridge consists at	L4	CO4	/ IVI
		balance are $R_1 = 47 \text{ k}\Omega$ and $C_1 = 0.01 \mu\text{F}$ in			
		arm AB, $R_2 = 5.1 \text{ k}\Omega$ in arm BC, $R_3 = 100$			
		$k\Omega$ in arm AD. Find the unknown			
		impedance?			
		impedance:			
		UNIT-IV		,	
7	a)	Illustrate with the help of a neat sketch the	L3	CO ₃	7 M
		working of inductive transducers.			
	b)	Describe different types of thermistors.	L2	CO5	7 M
		Mention advantages and disadvantages of			
		thermistors.			
		OR		·	
8	a)	Discuss in detail about measurement of	L2	CO5	7 M
		strain using strain gauge.			

	b)	What is the purpose of thermocouple?	L4	CO5	7 M				
		Explain about various types of							
		thermocouples.							
	UNIT-V								
9	a)	In detail explain successive approximation	L2	CO5	7 M				
		digital voltmeter.							
	b)	Illustrate with the help of a neat block	L4	CO5	7 M				
		diagram the working of spectrum analyzer.							
OR									
10	a)	Explain the ramp type digital voltmeter with	L2	CO5	7 M				
		the block diagram.							
	b)	Discuss the operation of digital multimeter	L2	CO3	7 M				
		in detail.							